Push 22 Side Bet @ Viejas Casino
My local Viejas Casino just installed Free Bet Blackjack, a game I worked on for Geoff Hall and ShuffleMaster. There’s a side bet on the game called “Push 22”, that I did not work on (until I got back from Viejas last night). I figured I’d check if it was you-know-what.
The bet has some nice payouts, and is a natural match for a game where the dealer pushes all bets on a 22 bust. For a 6-deck shoe, the game has a 5.85% house edge. Not too bad, considering the odds it pays.
Outcome | Frequency | Payout | Return |
---|---|---|---|
Suited Dealer 22 | 0.003327 | 50-to-1 | 0.166345 |
Same Colour Dealer 22 | 0.011659 | 20-to-1 | 0.233174 |
Other Dealer 22 | 0.058551 | 8-to-1 | 0.468405 |
Dealer Not 22 | 0.926464 | lose | -0.926464 |
Total | 1.000000 | -0.058540 |
Of course, I had to check the EORs (for a single removed card), which showed promise:
Removed | EOR | Balanced | Unbalanced |
---|---|---|---|
Deuce | -0.44% | -1 | -1 |
Trey | +0.07% | ||
Four | +0.11% | ||
Five | +0.13% | +1 | |
Six | -0.32% | -1 | -1 |
Seven | -0.12% | ||
Eight | -0.06% | ||
Nine | -0.03% | ||
Ten/Face | +0.03% | ||
Ace | +0.52% | +2 | +2 |
With the unbalanced blah, you should blah for +24 or better. This will happen 5.1% of the time, with an average +3.6% blah.
Lucky Stiff BJ Side Bet @ 7 Cedars, WA
Paigow Dan told me about the new Lucky Stiff side bet his friend recently placed at the 7 Cedars Casino in WA. It looks fun, because you’re paid 5:1 when your initial 12-16 hard total ends up winning the main hand. Also, blackjack pays even-money on the side bet, and an initial pair of 8-8, 7-7, and 6-6 instantly wins 10:1. Anyways, I ran the bet through my BJ analyzer, to see if it was interesting in any way. I understand that 7 Cedars lets you bet $5 on the main hand, and up to $25 on the side bet. So I ran the analysis for a 5:1 side-to-main ratio on a 6-deck, H17, SP4, SPA4 game. The return showed a house edge of 3.5% of the combined (main+side) wager. The optimal strategy for the 5:1 side-to-main ratio only has a few differences with basic strategy.
Hand | Dealer Upcard | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | A | |
Soft Totals | ||||||||||
soft 21 | S | S | S | S | S | S | S | S | S | S |
soft 20 | S | S | S | S | S | S | S | S | S | S |
soft 19 | S | S | S | S | D | S | S | S | S | S |
soft 18 | D | D | D | D | D | S | S | H | H | H |
soft 17 | H | D | D | D | D | H | H | H | H | H |
soft 16 | H | H | D | D | D | H | H | H | H | H |
soft 15 | H | H | D | D | D | H | H | H | H | H |
soft 14 | H | H | H | D | D | H | H | H | H | H |
soft 13 | H | H | H | D | D | H | H | H | H | H |
Hard Totals | ||||||||||
hard 20 | S | S | S | S | S | S | S | S | S | S |
hard 19 | S | S | S | S | S | S | S | S | S | S |
hard 18 | S | S | S | S | S | S | S | S | S | S |
hard 17 | S | S | S | S | S | S | S | S | S | S |
hard 16 | S | S | S | S | S | H | H | H | S | H |
hard 15 | S | S | S | S | S | H | H | H | S | H |
hard 14 | S | S | S | S | S | H | H | H | H | H |
hard 13 | S | S | S | S | S | H | H | H | H | H |
hard 12 | H | S | S | S | S | H | H | H | H | H |
hard 11 | D | D | D | D | D | D | D | D | D | D |
hard 10 | D | D | D | D | D | D | D | D | H | H |
hard 9 | H | D | D | D | D | H | H | H | H | H |
hard 8 | H | H | H | H | H | H | H | H | H | H |
hard 7 | H | H | H | H | H | H | H | H | H | H |
hard 6 | H | H | H | H | H | H | H | H | H | H |
hard 5 | H | H | H | H | H | H | H | H | H | H |
Pairs | ||||||||||
A-A | P | P | P | P | P | P | P | P | P | P |
10-10 | S | S | S | S | S | S | S | S | S | S |
9-9 | P | P | P | P | P | S | P | P | S | S |
8-8 | P | P | P | P | P | P | P | P | P | P |
7-7 | P | P | P | P | P | P | H | H | H | H |
6-6 | P | P | P | P | P | H | H | H | H | H |
5-5 | D | D | D | D | D | D | D | D | H | H |
4-4 | H | H | H | P | P | H | H | H | H | H |
3-3 | P | P | P | P | P | P | H | H | H | H |
2-2 | P | P | P | P | P | P | H | H | H | H |
The EORs are fairly small for the 5:1 side-to-main ratio. They’re about only 1/3rd as effective as the EORs for a standard 6-deck shoe main game. So it’s not worth your time to count this side bet. For a single card removed in a 6-deck game, the EORs are as follows:
Card Removed | Return | EOR |
---|---|---|
None | 3.5009% | |
Ace | 3.1324% | 0.3685% |
Deuce | 3.3055% | 0.1954% |
Trey | 3.3723% | 0.1285% |
Four | 3.4423% | 0.0585% |
Five | 3.5247% | -0.0238% |
Six | 4.0443% | -0.5434% |
Seven | 3.7864% | -0.2856% |
Eight | 3.7654% | -0.2845% |
Nine | 3.3903% | 0.1106% |
Ten/Face | 3.4194% | 0.0815% |
This bet looks like fun. If you bet an equal main and side bet (1:1 side-to-main ratio), the house edge is 4.66% on the combined 2 unit bet (2.33% element-of-risk). That’s not too bad for a carnival-like odds. If you make a small side bet 1/5th of your main bet (e.g., a $1 side bet to a $5 main bet), then the house edge on the combined 1.2 unit bet is 1.38%. That’s not bad for a little bit of fun.
Suit’Em Up BJ Side Bet @ Venetian, LV
I saw this blackjack side bet in the Venetian last month, and it looked pretty you-know-what. I forgot to post about it until now. I’m pretty sure they use 8-deck shoes at the Venetian.
Hand | Combinations | Frequency | Payout | Return |
---|---|---|---|---|
Suited Aces | 112 | 0.001297 | 60 | 0.077850 |
Suited BJs | 1,024 | 0.011863 | 10 | 0.118628 |
Suited Pairs | 1,344 | 0.015570 | 5 | 0.077850 |
Suited 11’s | 1,024 | 0.011863 | 3 | 0.035589 |
Other Suited | 17,920 | 0.207560 | 2 | 0.415199 |
nothing | 64,896 | 0.751807 | -1 | -0.751807 |
total | 86,320 | 1.000000 | -0.026691 |
Removed Card | EOR | Balanced Count | Unbalanced Count |
---|---|---|---|
Deuce | +0.000767 | +1 | +1 |
Trey | +0.000767 | +1 | +1 |
Four | +0.000767 | +1 | +1 |
Five | +0.000767 | +1 | +1 |
Six | +0.000767 | +1 | +1 |
Seven | +0.000767 | +1 | +1 |
Eight | +0.000767 | +1 | +1 |
Nine | +0.000767 | +1 | +1 |
Ten | +0.000116 | 0 | +1 |
Jack | +0.000116 | 0 | 0 |
Queen | +0.000116 | 0 | 0 |
King | +0.000116 | 0 | 0 |
Ace | -0.006601 | -8 | -8 |
Using the unbalanced taps, the bet is +EV for RC >= +34 (assuming two decks behind the cut card). This yields 16% betting opportunities, with an average edge of +2.8%/bet. The theoretical max (using full shoe composition, including suits) is 17% opportunities @ +3.0%/bet. It’s not worth much.
Bust Bonus BJ Side Bet
A reader pointed me out to Galaxy Gaming’s Bust Bonus blackjack side bet that the dealer will bust, which you make after seeing the dealer’s upcard. I figured I’d run the numbers to see if it was any good, or if it was countable. Well, it might be a fun bet on a few upcards, but it’s kind of expensive for the (offsuit) odds they offer.
Dealer Upcard |
Probability Suited Bust |
Probability Offsuit Bust |
Probability No Bust |
Payout Suited Bust |
Payout Offsuit Bust |
Return |
---|---|---|---|---|---|---|
Ace* | 0.002222 | 0.199059 | 0.798719 | 50 | 3 | -0.090437 |
Deuce | 0.008751 | 0.347909 | 0.643339 | 25 | 1 | -0.076644 |
Trey | 0.011524 | 0.365435 | 0.623042 | 15 | 1 | -0.084754 |
Four | 0.014574 | 0.383896 | 0.601530 | 10 | 1 | -0.071892 |
Five | 0.017883 | 0.401749 | 0.580368 | 5 | 1 | -0.089206 |
Six | 0.020844 | 0.418415 | 0.560741 | 3 | 1 | -0.079793 |
Seven | 0.011716 | 0.250219 | 0.738064 | 15 | 2 | -0.061881 |
Eight 888 |
0.011133 0.000207 |
0.227312 0.005041 |
0.756307 |
10 75 |
2 25 |
-0.048772 |
Nine | 0.011602 | 0.217640 | 0.770758 | 20 | 2 | -0.103441 |
Ten/Face* | 0.012263 | 0.217975 | 0.769761 | 20 | 2 | -0.088547 |
*Bust Bonus wagered after dealer peeks for blackjack.
The most countable bet is against a dealer 8 upcard. It has the lowest house edge (4.9%), and has high payouts for the 888o and 888s busts. The EORs are large, and a simple unbalanced count (Eight => -8, Nine, Ten/Face, Ace, Deuce, Trey, Four => +1; bet when running count >= +24) yields an average +7.5% edge/bet on 17.3% of the dealer 8 upcard hands. Of course, a dealer 8 only occurs on 1/13th of the hands, so it’s not a very practical bet. An ideal count (using total shoe composition including suits) yields a theoretical max return of +7.5% edge/bet on 1.6% of the dealt hands.
Sadly, the standard BJ counts (like the unbalanced Knockout count) don’t correlate with the EV of any of these bets, because unlike blackjack, the Ace hurts the Bust Bonus bet. (Ace rich shoe makes it harder to bust.)
Bust It Blackjack Side Bet
I ran across the Bust It blackjack side bet last weekend at the Palazzo in Las Vegas. It seemed countable, so I ran the numbers today. The bet is simple. You make the side bet before the hand begins, and if the dealer busts on 3 cards, you win according to the paytable. If the dealer doesn’t bust on 3 cards, you lose. The basic house edge for a 6-deck shoe game is -6.91%. The EORs are fairly high, as listed below.
Card | EOR | Balanced Count | Unbalanced Count | Simplified Count |
---|---|---|---|---|
Deuce | +0.006589 | +2 | +2 | +2 |
Trey | +0.005042 | +2 | +2 | +2 |
Four | +0.002963 | +1 | +2 | +2 |
Five | +0.000256 | 0 | 0 | 0 |
Six | -0.006910 | -2 | -2 | -1 |
Seven | -0.001608 | -1 | 0 | 0 |
Eight | -0.003443 | -1 | -1 | -1 |
Nine | -0.003001 | -1 | -1 | -1 |
Ten/Face | -0.002231 | -1 | -1 | -1 |
Ace | +0.009038 | +3 | +3 | +2 |
If the cut card is placed after the 5th deck, then an ideal count (using perfect shoe composition) yields 14.7% betting opportunities, with an average +6.73% advatange per bet. That’s an average return of about 1.0% per dealt hand.
Practically, you’d use the unbalanced count in the table above and bet with a running count of +25 or more. This practical count yields 14.4% betting opportunities, with an average +6.1% edge per bet. That works out to an average return of +0.88% per dealt hand.
Depending on the side bet limits, counting this bet could be profitable. But, more likely, they’ll limit you to a $25 max bet. So your profit rate would be (100 hands/hr)(14.4% bets/hand)(+6.1% profit/bet)($25/bet) = $22/hr. Of course, you’ll almost certainly have to make the main bet too (e.g., the Cosmopolitan wouldn’t let me make bonus bets on my friend’s blackjack hand). If it’s only $5, and you get good rules @ -0.6%, then your cost would be (100 hands/hr)($5/hand)(-0.6%) = $3/hr, leaving you with a $19/hr job.
The unbalanced count is fairly complicated, with its multi-level taps. Unless your a very skilled counter, you’ll be better off using the simplified count above. It only uses +2 and -1 taps, and it still performs well, yielding 13.5% betting opportunities, with an average +5.3% edge per bet. Bet when the running count is +24 or more.
Also, the standard blackjack counts don’t work for this bet (there’s no correlation, I checked). You can tell that blackjack counts are very different than this specialised count, because Aces are +3 and Sixes are -2. Those are opposite to blackjack values, and they make sense. Ace-rich shoes are bad for 3-card busts. Also, sixes are valuable because of the 15:1 payouts.
Note: a reader says the Palazzo/Venetian deals out of 8-deck shoes. If that’s the case, and they place the cut card @ 6 decks, then the ideal return decreases to 10.7% frequency at an average +4.7% edge. The simplified count return decreases to 8.9% opportunities @ +3.5% edge per bet. You would bet for an RC of +32 or higher.
Dealer Outcome
|
Frequency
|
Probability
|
Payout
|
Return
|
bust with 888 suited
|
240
|
0.001596%
|
200
|
0.003191
|
bust with 888 coloured
|
1,080
|
0.007181%
|
50
|
0.003590
|
bust with 6
|
73,440
|
0.488299%
|
15
|
0.073245
|
bust with 7
|
157,536
|
1.047450%
|
9
|
0.094270
|
bust with 8
|
245,232
|
1.630536%
|
7
|
0.114138
|
bust with 9
|
342,720
|
2.278729%
|
5
|
0.113936
|
bust with 10
|
1,782,144
|
11.849393%
|
3
|
0.355482
|
no 3 card bust
|
12,437,568
|
82.696816%
|
-1
|
-0.826968
|
total
|
15,039,960
|
100.000000%
|
-0.069115
|
Push Your Luck Blackjack Side Bet
I came across the Push Your Luck (PYL) blackjack sidebet yesterday (while browsing, not IRL), and I wondered if it was exploitable in any way. PYL is a simple side bet. You make the bet before you start your blackjack hand, and if you end up pushing your main bet, you win 10:1 on the side bet. The max bet is 1/2 your main bet, and its usually limited to $25.
PYL has been out there for a while, but it’s new to me. It’s pretty simple to code up in my analyzer, which finds the optimal play for the combined (main + side) bet. I don’t know why, but I always expect these bets to be +EV, or somehow exploitable. I’m kind of optimistic that way.
Well, I was very surprised to find the house edge of the side bet is very low. Even when you max the side bet (@ 1/2 your main bet), the house edge of the combined (main + side) bet is only 0.76% for a 6 deck game with good rules (DAS, SP4, SPA4, H17). That’s like a cost of 0.25%, and you’re getting 10:1 odds! Here’s the auto-generated strategy table:
Hand | Dealer Upcard | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | A | |
Soft Totals | ||||||||||
soft 21 | S | S | S | S | S | S | S | S | S | S |
soft 20 | S | S | S | S | S | S | S | S | S | S |
soft 19 | S | S | S | S | S | S | S | S | S | S |
soft 18 | S | S | S | S | S | S | S | H | S | S |
soft 17 | S | S | S | S | D | S | H | H | H | H |
soft 16 | H | H | H | D | D | H | H | H | H | H |
soft 15 | H | H | H | H | D | H | H | H | H | H |
soft 14 | H | H | H | H | H | H | H | H | H | H |
soft 13 | H | H | H | H | H | H | H | H | H | H |
Hard Totals | ||||||||||
hard 20 | S | S | S | S | S | S | S | S | S | S |
hard 19 | S | S | S | S | S | S | S | S | S | S |
hard 18 | S | S | S | S | S | S | S | S | S | S |
hard 17 | S | S | S | S | S | S | S | S | S | S |
hard 16 | H | H | S | S | S | H | H | H | H | H |
hard 15 | H | H | H | H | S | H | H | H | H | H |
hard 14 | H | H | H | H | H | H | H | H | H | H |
hard 13 | H | H | H | H | H | H | H | H | H | H |
hard 12 | H | H | H | H | H | H | H | H | H | H |
hard 11 | D | D | D | D | D | D | H | H | H | H |
hard 10 | D | D | D | D | D | H | H | H | H | H |
hard 9 | H | H | H | D | D | H | H | H | H | H |
hard 8 | H | H | H | H | H | H | H | H | H | H |
hard 7 | H | H | H | H | H | H | H | H | H | H |
hard 6 | H | H | H | H | H | H | H | H | H | H |
hard 5 | H | H | H | H | H | H | H | H | H | H |
Pairs | ||||||||||
A-A | P | P | P | P | P | P | P | P | P | P |
10-10 | S | S | S | S | S | S | S | S | S | S |
9-9 | S | S | S | S | S | S | S | P | S | S |
8-8 | P | P | P | P | P | P | P | P | P | P |
7-7 | P | P | P | P | P | P | P | P | P | H |
6-6 | P | P | P | P | P | P | H | H | H | H |
5-5 | D | D | D | D | D | D | H | H | H | H |
4-4 | H | H | H | H | H | H | H | H | H | H |
3-3 | P | P | P | P | P | P | P | H | H | H |
2-2 | P | P | P | P | P | P | P | H | H | H |
With a max PYL bet, the game gets a little wild where you’re hitting the majority of your under-17 hands, even against low dealer upcards. People must have a fit at this game. But it looks kind of fun, because you’re trying to get a nice 10:1 payout. It’s a good reason to play crazy.
I thought with such a low house edge, and with a 10-to-1 multiplier, the game would be easily countable. However, the EORs are pretty tame, and are very similar to standard blackjack:
Card | EOR |
---|---|
Deuce | +0.076% |
Trey | +0.069% |
Four | +0.056% |
Five | +0.082% |
Six | +0.122% |
Seven | -0.066% |
Eight | -0.057% |
Nine | -0.008% |
Ten/Face | -0.031% |
Ace | -0.142% |
You’ll probably need the proper index plays for (not) hitting your under-17 hands on +EV counts. I looked at the strategy for a small +EV count, and the borderline decisions shift towards standard plays. If I get around to learning the lingo for index plays, I’ll post them here for PYL.
Bust Me Blackjack @ Valley View Casino, CA
The new bust me blackjack sidebet is bad, but at least it’s countable. It’s a blackjack side bet you make after seeing your hand, on whether you’ll bust on the next hit. You get different odds, depending on your total. They’ll let you bet table limits on the side bet, regardless of the size of your main bet. So its pretty obvious that the house edge has to be horrendous to avoid it being countable. And it is. (It’s both horrendous, and countable.)
I’m pretty sure anyone can tell just by looking at the paytable, but here’s the numbers anyways.
Total | Payout For Bust | House Edge |
---|---|---|
16 | 1:2 | 7.692% |
15 | 1:2 | 19.23% |
14 | 1:1 | 7.692% |
13 | 3:2 | 3.846% |
12 | 2:1 | 7.692% |
Yep, it’s that bad. A true sucker bet. You might be able to fool some of the players some of the time, but you won’t be able to fool them for long. Everyone will catch on to how bad this bet is sooner or later.
Of course it has to be bad, since the first thing everyone thinks about is counting for 10’s and 9’s, and waiting until the end of the shoe to whoop out the $500 and $1000 Bust Me bets on hard-13. (The rack cards make it clear you can bet the table limits at any time, regardless of the size of your main bet.) I thought there might be frequent +EV opportunities, so I plotted the distribution of EV’s for the hard-13 bet throughout the shoe:
The Bust Me 13 sidebet gets very good rather frequently. Of course, you must have hard-13 to bet, so this +EV opportunity only occurs on about 2.6% of your hands, with an average edge of +5.4%/bet. That’s not great, but you can make a huge $500 or $1000 table limit bet, until they stop you. So you’ll get about 1.2 betting opportunities per shoe, and even if you bet $1000, you’ll only average about a $65 profit per shoe.
(Thanks to reader fivespot for pointing out my error in the first version of the post; I had one of those one-line bugs, and was shuffling after every hand. Aiyah!)
House Money BJ Side Bet @ Pala Casino
Hooray, another game that I did the math for hits the floor! House Money is a blackjack side bet created by Roger Snow of ShuffleMaster. It’s unique because it allows the player to cap his main blackjack bet with his side bet winnings. The side bet pays when your first two cards make a pair, straight, or straight flush. So, if you’re dealt a suited A-K, the side bet pays 9:1. You always have the option of taking the proceeds (10 units in this case), and adding it to your main blackjack bet. In this case, your BJ nets you a profit of (3:2)(10) + 9 = 24 units on the side bet. (If this reads too much like a paid advertisement, skip to the section on counting for this bet.)
For a 6-deck shoe game with good rules, and the correct capping strategy, the house edge for this side bet is only 2.6%. The basic strategy of when to cap your main bet with your side bet proceeds is presented below.
The game is currently available at my nearby Pala Casino, the Siena in Reno, and the Drift On Inn in WA.
Rules
The rules for the House Money side bet are as follows:
- The player makes the optional side bet wager before the hand is dealt.
- The side bet pays for the initial 2-card player hands according to the paytable below.
- The player has the late (after dealer peeks for BJ) option of capping his main blackjack bet with an amount up to the entire side bet proceeds.
- The player completes the main hand following normal blackjack rules.
Hand | Payout |
---|---|
AK suited | 9-to-1 |
Straight Flush | 4-to-1 |
Pair | 3-to-1 |
Straight | 1-to-1 |
Nothing | lose |
Basic Strategy
The table below tells you when you should cap your main bet with the winning proceeds of your side bet. “Y” means to cap the bet with the proceeds, because the EV of the hand (after the dealer peeks for BJ) is positive. “N” means not to cap the bet, but just to collect your winnings, because the post-peek EV of the hand is negative. After the capping decision, play your hand according to blackjack basic strategy.
Hand | Dealer Upcard | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | A | |
Straights and Straight Flushes | ||||||||||
AK | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
KQ, QJ, JT | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
T9 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
98, 87, 76 | N | N | N | N | N | N | N | N | N | N |
65 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
54 | Y | Y | Y | Y | Y | Y | Y | N | N | N |
43 | N | N | N | Y | Y | N | N | N | N | N |
32 | N | N | N | N | Y | N | N | N | N | N |
A2 | Y | Y | Y | Y | Y | Y | Y | N | N | N |
Pairs | ||||||||||
A-A | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
10-10 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
9-9 | Y | Y | Y | Y | Y | Y | Y | N | N | N |
8-8 | Y | Y | Y | Y | Y | Y | N | N | N | N |
7-7 | N | N | Y | Y | Y | N | N | N | N | N |
6-6 | N | N | Y | Y | Y | N | N | N | N | N |
5-5 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
4-4 | N | Y | Y | Y | Y | Y | N | N | N | N |
3-3 | N | N | Y | Y | Y | N | N | N | N | N |
2-2 | N | N | Y | Y | Y | Y | N | N | N | N |
Countability
This side bet is only slightly countable, using the counting coefficients (2 => +1, 3 => +1, 4 => +1, 5 => 0, 6 => 1, 7 => 1, 8 => 1, 9 => 1, T => -1, J => -1, Q => -1, K => -2, A => -2) and a true count threshold of 3.1. From a 6-deck shoe with 1 deck behind cut card, you’ll have +EV betting opportunities about 13.4% of the time, with an average edge of +3.4%/bet. So betting $25 when the count is good will yield a profit rate (13.4%)($25)(+3.4%) = $0.11/hand. At 100 hands per hour, this yields $11/hr, which isn’t worth anyone’s time or effort.
Field of Gold (+EV)
Everybody thank Eliot Jacobson for working for you. He emailed me this morning telling me the Field of Gold blackjack side bet was crushable. And it is. For real. The count is simple, and for a 6-deck shoe game, you’ll be able to bet 19% of the time, with an average edge of +6.5%/bet. That’s a profit of ($25 bet)(19% bet/hand)(+6.5% EV/bet) = $0.31/hand. For double-deck, the numbers are even better, yielding 27% betting opportunities with an average edge of +8.2%/bet. For $25 bets, that yields a profit of $0.55 per hand dealt. That adds up pretty quickly. It’s more than $100/hr.
This is about as good as it gets, as it’s a fast blackjack game. Oh, by the way, Eliot also brought you the equally crushable Lucky Lucky bet, which I probably understated in my post. These are probably the best two countable side bets out there, and nobody but Eliot has noticed them. Oh, and he’s the one that pointed out the Dragon-7 vulnerability.
Anyway, here’s what you’re looking for:
Use the following count:
Card | Value |
---|---|
Ace | -3 |
Deuce | -1 |
Nine, Ten, Queen, King | +1 |
others | 0 |
Bet when the true count (= runningCount/decksRemaining) is 2.2 or better. You can see from the graph below that the EV is strongly correlated with the true count.
This side bet becomes highly profitable when the shoe is rich in aces and deuces, and lean in high cards. During some shoes, the deck can easily get really good, or really bad for the Field of Gold bet. The distribution of the side bet EV is plotted below over the course of the 6-deck shoe and the double-deck game. Note the peak of the distribution is centered about the nominal -5.66% return of the bet right after the shuffle. Then, especially towards the end of the shoe, the side bet return can vary wildly. Note all the area under the long tail of the distributions to the right of the y-axis (EV>0). This is why the game is crushable.
(5 deck penetration of 6-deck shoe; 29 cards behind cut card in double-deck.)
Lucky Lucky Blackjack Sidebet (+EV)
Well, here’s another massively countable side bet that some people might be interested in (advantage players, casino floor supervisors, and the game publisher), but that I’ll never play. I think after this one, designers will know to check their games for vulnerabilities, especially when there’s oversized items in the paytable. And we’ll remember, “It’s not a sucker bet if the count is good.”
Again, Eliot Jacobson pointed this one out to me. (But, if Barona had this side bet, I’d have already looked at it.)
The Lucky Lucky blackjack side bet is played with your first two dealt cards, and the dealer upcard. On these three cards, you get paid for various ways to make 21, and for any 20 and 19 total. The most countable version of this side bet is for the double-deck version with the paytable below. The game is also countable for the 6 deck shoe game, but it’s only 60% as profitable.
Hand | Frequency | Probability | Payout | Return |
---|---|---|---|---|
suited 678 | 32 | 1.757238E-4 | 100 | 0.01757238 |
777 | 56 | 3.075166E-4 | 50 | 0.01537583 |
other 678 | 480 | 0.00263586 | 30 | 0.07907569 |
suited 21 | 936 | 0.00513992 | 15 | 0.07709880 |
other 21 | 14904 | 0.08184334 | 3 | 0.24553003 |
any 20 | 13792 | 0.07573694 | 2 | 0.15147388 |
any 19 | 13344 | 0.07327680 | 2 | 0.14655362 |
others | 138560 | 0.76088389 | -1 | 0.76088389 |
total | 182,104 | 1.00000000 | -0.02820366 |
As usual, I program a function that tells me the EV for any given shoe composition. Then I simulate millions of hands, calculating the ideal EV of the side bet at the beginning of each hand. I sum up the times when the side bet is +EV, and find the average +EV bet and +EV frequency. For the double-deck Lucky Lucky, I got
double-deck, cut card @ 75th card ideal +EV frequency: 0.2769, ideal EV/bet: +0.0591
which is not a practical counting scheme, but the theoretical limit if you used a computer that took into account all info (suits, etc.).
Then I calculated the Effect-of-Removal (EORs) of a given card on the EV, in order to make counting tags. (Outside the gambling world, people would call “EORs” sensitivities, and “tags” coefficients.)
Card | EOR | Tag |
---|---|---|
Deuce | +0.007853 | +1 |
Trey | +0.006066 | +1 |
Four | +0.004099 | +1 |
Five | +0.003171 | 0 |
Six | -0.010422 | -2 |
Seven | -0.017270 | -2 |
Eight | -0.012616 | -2 |
Nine | +0.002515 | 0 |
Ten/Face | +0.006270 | +1 |
Ace | -0.008477 | -1 |
So, setting the trueCount threshold to 2.4 (bet Lucky Lucky when the trueCount is >= 2.4), you get the practical results in double deck:
practical frequency: 0.2640, average EV/bet: +0.0561
6 Deck Shoe Version
The 6 deck shoe paytable is better than the double deck version, as it pays 200:1 for a suited 777. The EORs are similar, and I came up with the same count tags as the double deck game. Using a trueCount threshold of 2.1, the practical counting scheme yields:
ideal +EV frequency: 0.2311, ideal average EV/bet: +0.0432 practical frequency: 0.2217, practical average EV/bet: +0.0409
which is only 61% of the profit rate as the double-deck game.
4 comments